
Md. Wasi-ur- Rahman, David Ozog, and James Dinan

2

Legal Disclaimers

OpenSHMEM Workshop 2017

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. Other names and brands may be claimed as the property of

others.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at

intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Tests document performance of components on a particular test, in

specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate

performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon and Xeon Phi and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be

claimed as the property of others.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any

change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products. For more complete information

visit www.intel.com/benchmarks.

© 2017 Intel Corporation.

http://www.intel.com/benchmarks

3

Outline

‒ Introduction and Motivation

‒ Challenges

‒ Design of an on-node data sharing library, shnode

‒ Performance Evaluation

‒ Future Work and Conclusion

OpenSHMEM Workshop 2017

4

Introduction and Motivation

OpenSHMEM Workshop 2017

• PGAS programming models provide seamless ability to perform one-sided remote
memory operations

‒ No explicit participation from the remote Processing Element (PE)

• For on-node PEs, such operations can result in performance overheads due to

‒ Multiple copies of the same data within a shared memory address space

‒ Synchronization mechanisms associated with distributed memory access patterns

‒ Memory replication cost of single process multiple data programming

• OpenSHMEM community is actively investigating library extensions to better support
node-level optimizations

5

Introduction and Motivation

OpenSHMEM Workshop 2017

• OpenSHMEM Context extension provides thread-safety by isolating communication
streams

‒ Optimizes communication performance through overlap with each other

• Paris OpenSHMEM

‒ High performance communication engine based on the Boost library

• Application developers may still opt for evolutionary approach for data sharing

‒ Most OpenSHMEM implementations support a query function that provide a direct
pointer to the remotely accessible memory of a remote PE

6

Problem Statement

OpenSHMEM Workshop 2017

How can application developers avoid/minimize on-node
communications with the information provided

by the built-in OpenSHMEM routines?

7

Outline

‒ Introduction and Motivation

‒ Challenges

‒ Design of an on-node data sharing library, shnode

‒ Performance Evaluation

‒ Future Work and Conclusion

OpenSHMEM Workshop 2017

8

Challenges

OpenSHMEM Workshop 2017

• Current implementations of shmem_ptr provide limited information

• Most OpenSHMEM implementations do not provide an easy way to identify the local
PEs and the data object references

• Leader based collective implementation can be beneficial for many applications, for
which no abstraction is present

• Tuning to identify the optimum number of local leaders for each collective operation
needs to be investigated

9

Existing Works

OpenSHMEM Workshop 2017

• Welch et al. introduced teams and spaces concepts for gathering on-node groups of
PEs

• Hoefler et al. introduced MPI+MPI to enable inter-process communication through
shared memory windows

• Cray-SHMEM provides APIs to discover local PEs and building a team through
shmem_local_ptr and shmem_team_translate_pe

10

Outline

‒ Introduction and Motivation

‒ Challenges

‒ Design of an on-node data sharing library, shnode

‒ Performance Evaluation

‒ Future Work and Conclusion

OpenSHMEM Workshop 2017

11

Design of shnode

OpenSHMEM Workshop 2017

• Utilizing the built-in shmem_ptr routine, we design
shnode

• Purpose is to provide application developers a way to
minimize on-node communication

• Stores the data object references for other PEs
located on the same node

• Subsequent remote memory operations can be
substituted with direct load and stores

• For each on-node team, the lowest rank PE is
assigned as the leader

Application

shnode

OpenSHMEM
Implementation

12

Proposed fundamental APIs for shnode

OpenSHMEM Workshop 2017

int shnode_init();/*initialization*/

int shnode_create_team (void *data); /*team creation*/

int shnode_add_data (void *data);

/*addition of data objects*/

int shnode_is_team_member (int rem_pe); /*member check*/

void *shnode_get_member_remote_addr (int rem_pe, void *data);

/*retrieval of memory address*/

int shnode_am_team_leader(); /*leader check*/

int shnode_finalize(); /*destroy*/

Used with shmem_ptr to populate the
on_node PEs’ table

Additional data can be added to the table using
shmem_ptr for the team PEs

Retrieves the address from the stored team table
created by shnode_create_team

13

Data Structure for shnode

OpenSHMEM Workshop 2017

• Simple data structure mapping each PE
to a list of data object references

• A second list is maintained that maps
the desired object to the location it is
stored on the first map list

• References to PEs on other nodes and
self are kept empty

• This data structure is populated through
shnode_create_team which is
invoked only once at the beginning

PE 0 PE 12

14

Example all-to-all program utilizing shnode

OpenSHMEM Workshop 2017

shmem_init();

shnode_init();

data1 = shmem_malloc (size1);

shnode_create_team (data1);

for (rem_pe = 0; rem_pe < npes;

rem_pe++) {

if (shnode_is_team_member

(rem_pe)) {

void *ptr = shnode_get

_member_remote_addr(rem_pe,

data1);

memcpy(…);

} else {

shmem_put (dest, src,

nelems, rem_pe);

}

}

shnode_finalize();

shmem_finalize();

shmem_init();

…

data1 = shmem_malloc (size1);

…

for (rem_pe = 0; rem_pe < npes;

rem_pe++) {

shmem_put(dest, src,

nelems, rem_pe);

}

…

shmem_finalize();

15

Designing helper routines for Collectives

• Each collective operation can be divided into three sub-
tasks based on the teams formed by shnode

• The local PEs transmit their data to the
corresponding leaders

• A collective operation strided over all the leaders
across the nodes takes place

• Leaders transmit the collected value to the
corresponding local PEs

• A power-of-two number of processes per node is
assumed to be launched for the current
implementation

OpenSHMEM Workshop 2017

16

Example int_sum_to_all utilizing shnode

OpenSHMEM Workshop 2017

If (leader == ME) {

for (all members in team) {

//copy data from src_ptr to the

self source

}

shmem_barrier(…); //strided over

shmem_int_sum_to_all(…); //all the

//leaders

for (all members in team) {

//copy data from self destination

to dst_ptr

}

}

shmem_barrier_all();

shmem_init();

…

//shmem_int_sum_to_all (…);

shnode_int_sum_to_all (…);

…

shmem_finalize();

17

Designing better overlapping with communication

OpenSHMEM Workshop 2017

• shnode provides the opportunity to the application developers to replace the
remote memory operations with direct load/store

• If applicable, pointer swapping can bring further benefits as it removes all memory to
memory data transfer

• Another alternative is to schedule the inter-node and intra-node data transfers
separately

• Scheduling the intra-node memory operations at the end may ensure better
overlapping between computation and inter-node transfers

• Re-structuring of the communication and computation can be beneficial with
shnode

18

Outline

‒ Introduction and Motivation

‒ Challenges

‒ Design of an on-node data sharing library, shnode

‒ Performance Evaluation

‒ Future Work and Conclusion

OpenSHMEM Workshop 2017

19

Experimental Setup

• NERSC system, Cori

– Cray XC40

– Intel® Xeon Phi™ 7250 (Knights Landing), 68 cores/node @ 1.4 GHz

– 96 GB DDR4 memory

• shnode was implemented on top of Cray SHMEM v7.5.5

OpenSHMEM Workshop 2017

20

Profiling shnode APIs

• Profiling 4 APIs on Two KNL nodes

• PEs per node is varied from 1 to 64

• Average execution time is taken across all PEs

1

10

100

1000

10000

2 4 8 16 32 64 128

A
ve

ra
ge

 T
im

e
(u

s)

Number of PEs

create-team finalize init

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 8 16 32 64 128

A
ve

ra
ge

 T
im

e
(u

s)

Number of PEs

get_remote_addr shmem_ptr

• init, create_team, and finalize take less
than 0.1 seconds for 128 PEs

• shnode implementation can reduce the query
operation cost by 50% compared to the default
approach

OpenSHMEM Workshop 2017

21

Evaluation with OSU micro-benchmark

0.01

0.1

1

10

100

1000
1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

La
te

n
cy

 (
u

s)

Message Size (B)

shmem-get shnode-get

0.01

0.1

1

10

100

1000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

La
te

n
cy

 (
u

s)

Message Size (B)

shmem-put shnode-put

• Put and Get performance evaluation with 2 PEs

• Modified OSU benchmarks to evaluate with
shnode

• For small message sizes, both shnode-put and
shnode-get can perform 3-4.6x better; for large
message sizes, benefit is around 1.5-2.35x
compared to the default

OpenSHMEM Workshop 2017

22

Evaluation of Collectives (int_sum_to_all)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(s

)

PE/Leader

SHMEM SHMEM+shnode

2
.3

4 2
.9

7 3
.9

0

5
.6

1

6
.0

2 6
.7

4

9
.1

9

0
.4

3

0
.5

4

0
.6

2

0
.7

5

0
.7

8

0
.9

9 1
.8

8

128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(s

)

Number of PEs

SHMEM SHMEM+shnode

OpenSHMEM Workshop 2017

• Analyze the impact of multiple leaders on 4 nodes with
PEs per leader from 1 to 64

• Evaluated with 128 (2 nodes) to 8,192 (128 nodes) PEs
• 10MB buffer used as the source data; averaged over 10

iterations

• Multiple leaders/node achieve better
performance compared to the default; 8 PEs for
each leader provides optimum

• shnode provides 4.87x benefit compared to the
default implementation for 8,192 PEs

23

Evaluation of Collectives (fcollect)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(s

)

PE/Leader

SHMEM SHMEM+shnode

0
.0

2

0
.0

9

0
.2

2 0
.7

8 1
.5

9

4
.4

4

9
.2

3

0
.0

2

0
.0

6

0
.1

3

0
.4

2 0
.9

9

2
.2

1

4
.5

9

128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(s

)

Number of PEs

SHMEM SHMEM+shnode

OpenSHMEM Workshop 2017

• Analyze the impact of multiple leaders on 4 nodes with
PEs per leader from 1 to 64

• Evaluated with 128 (2 nodes) to 8,192 (128 nodes) PEs
• 10MB buffer used as the source data; averaged over 10

iterations

• 2 PEs for each leader provides optimum; more
PEs per leader introduces overhead

• shnode provides 2x benefit compared to the
default implementation for 8,192 PEs

24

Evaluation of ISx

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8 16 32 64 128 256

A
ve

ra
ge

 a
ll-

to
-a

ll
ti

m
e

(s
)

Number of PEs

SHMEM SHMEM+shnode SHMEM+shnode-CUST

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32 64 128 256

A
ve

ra
ge

 a
ll-

to
-a

ll
ti

m
e

(s
)

Number of PEs

SHMEM SHMEM+shnode SHMEM+shnode-CUST

OpenSHMEM Workshop 2017

• Strong and weak scale experiments for ISx on 4 nodes
with PEs varying from 8 to 256

• 1.5 billion items to sort for strong scale; for weak scale,
the number of items per PE is 33 million

• Node-local transfers are separated for the
SHMEM+shnode-CUST version of ISx

• Without customized communication, shnode provides
little benefit (~5%) compared to the SHMEM version

• With customized communication pattern, shnode
provides 1.5 - 2x benefit for both strong and weak
scaling

25

Outline

‒ Introduction and Motivation

‒ Challenges

‒ Design of an on-node data sharing library, shnode

‒ Performance Evaluation

‒ Future Work and Conclusion

OpenSHMEM Workshop 2017

26

Future Work

• Collective operations with any number of PEs per node

• Enabling/Disabling shnode features through configuration variables within
OpenSHMEM
– Collectives

– RMA functions

– Other helper query routines

• Exploring other applications to extract benefits from shnode

– Re-ordering to achieve communication avoidance for stencil algorithm

• Exploring performance improvement potential for MapReduce applications
– For shuffle and reduce sensitive applications, shnode may provide further benefits based on the data

transmission and reduce function characteristics

OpenSHMEM Workshop 2017

27

Conclusion

• shnode supports the formation of node-local teams within which applications can
do shared memory operations

• We present a set of APIs for shnode that can be used to create teams as well as
nominating single/multiple leader processes

• Number of leaders has a significant impact on collective performance

• shnode APIs has less overhead compared to the default available APIs

• For int_sum_to_all, shnode can bring 4.87x benefit compared to the default
approach by using multiple leaders

• By re-ordering the computation and communication phases, ISx can be improved by
1.5x using shnode

OpenSHMEM Workshop 2017

